首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   49篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   9篇
  2013年   6篇
  2012年   7篇
  2011年   8篇
  2010年   13篇
  2009年   11篇
  2008年   11篇
  2007年   11篇
  2006年   6篇
  2005年   9篇
  2004年   10篇
  2003年   11篇
  2002年   6篇
  2001年   11篇
  2000年   8篇
  1999年   7篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1981年   6篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1968年   1篇
排序方式: 共有224条查询结果,搜索用时 281 毫秒
41.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   
42.
43.

Background

Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.

Methodology/Findings

Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine) and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated), and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486). On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats). Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.

Conclusions/Significance

Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress, shown here for the first time, could be related to the therapeutic action of these drugs.  相似文献   
44.
Glutamate-mediated excitotoxicity plays a major role in the degeneration of motor neurons in amyotrophic lateral sclerosis and reduced astrocytary glutamate transport, which in turn increases the synaptic availability of the amino acid neurotransmitter, was suggested as a cause. Alternatively, here we report our studies on the exocytotic release of glutamate as a possible source of excessive glutamate transmission. The basal glutamate efflux from spinal cord nerve terminals of mice-expressing human soluble superoxide dismutase (SOD1) with the G93A mutation [SOD1/G93A(+)], a transgenic model of amyotrophic lateral sclerosis, was elevated when compared with transgenic mice expressing the wild-type human SOD1 or to non-transgenic controls. Exposure to 15 mM KCl or 0.3 μM ionomycin provoked Ca(2+)-dependent glutamate release that was dramatically increased in late symptomatic and in pre-symptomatic SOD1/G93A(+) mice. Increased Ca(2+) levels were detected in SOD1/G93A(+) mouse spinal cord nerve terminals, accompanied by increased activation of Ca(2+)/calmodulin-dependent kinase II and increased phosphorylation of synapsin I. In line with these findings, release experiments suggested that the glutamate release augmentation involves the readily releasable pool of vesicles and a greater capability of these vesicles to fuse upon stimulation in SOD1/G93A(+) mice.  相似文献   
45.
The adaptor protein 1A complex (AP‐1A) transports cargo between the trans‐Golgi network (TGN) and endosomes. In professional secretory cells, AP‐1A also retrieves material from immature secretory granules (SGs). The role of AP‐1A in SG biogenesis was explored using AtT‐20 corticotrope tumor cells expressing reduced levels of the AP‐1A μ1A subunit. A twofold reduction in μ1A resulted in a decrease in TGN cisternae and immature SGs and the appearance of regulated secretory pathway components in non‐condensing SGs. Although basal secretion of endogenous SG proteins was unaffected, secretagogue‐stimulated release was halved. The reduced μ1A levels interfered with the normal trafficking of carboxypeptidase D (CPD) and peptidylglycine α‐amidating monooxygenase‐1 (PAM‐1), integral membrane enzymes that enter immature SGs. The non‐condensing SGs contained POMC products and PAM‐1, but not CPD. Based on metabolic labeling and secretion experiments, the cleavage of newly synthesized PAM‐1 into PHM was unaltered, but PHM basal secretion was increased in sh‐μ1A PAM‐1 cells. Despite lacking a canonical AP‐1A binding motif, yeast two‐hybrid studies demonstrated an interaction between the PAM‐1 cytosolic domain and AP‐1A. Coimmunoprecipitation experiments with PAM‐1 mutants revealed an influence of the luminal domains of PAM‐1 on this interaction. Thus, AP‐1A is crucial for normal SG biogenesis, function and composition.   相似文献   
46.
47.
Lysosome-related organelles.   总被引:25,自引:0,他引:25  
Lysosomes are membrane-bound cytoplasmic organelles involved in intracellular protein degradation. They contain an assortment of soluble acid-dependent hydrolases and a set of highly glycosylated integral membrane proteins. Most of the properties of lysosomes are shared with a group of cell type-specific compartments referred to as 'lysosome-related organelles', which include melanosomes, lytic granules, MHC class II compartments, platelet-dense granules, basophil granules, azurophil granules, and Drosophila pigment granules. In addition to lysosomal proteins, these organelles contain cell type-specific components that are responsible for their specialized functions. Abnormalities in both lysosomes and lysosome-related organelles have been observed in human genetic diseases such as the Chediak-Higashi and Hermansky-Pudlak syndromes, further demonstrating the close relationship between these organelles. Identification of genes mutated in these human diseases, as well as in mouse and Drosophila: pigmentation mutants, is beginning to shed light on the molecular machinery involved in the biogenesis of lysosomes and lysosome-related organelles.  相似文献   
48.
49.
Members of the zeta family of receptor subunits (zeta, eta and gamma) are structurally related proteins found as components of the T cell antigen receptor (TCR) and certain Fc receptors. These proteins share the ability to form disulfide-linked dimers with themselves and with other members of the family. Comparison of the amino acid sequences of zeta and gamma reveals a significant degree of homology, which is highest within their membrane-spanning domains. Analysis of their transmembrane sequences on a helical wheel projection suggests that all of the identical amino acids are clustered on one face of a potential alpha-helix. This face contains the only cysteine residue within zeta, suggesting that this conserved region may function to mediate dimerization. Indeed, replacing the transmembrane domain of the Tac antigen (alpha chain of the interleukin-2 receptor) by that of the zeta chain resulted in the formation of disulfide-linked dimers of Tac. The conserved aspartic acid residue found in the zeta and gamma transmembrane sequences was found to play a role in disulfide linkage. Replacing the aspartic acid with a lysine but not with an alanine or valine residue allowed formation of disulfide-linked dimers. The ability of the aspartic acid residue to support dimerization was dependent upon its position within the helix. Thus, these observations indicate that residues within the zeta transmembrane domain play a critical role in the formation of disulfide-linked dimers. Expression of zeta mutants in zeta-deficient T cells revealed that the zeta transmembrane domain is also responsible for reconstituting transport of functional TCR complexes to the cell surface and differentiated the requirements for disulfide-linked dimerization per se from assembly of the TCR complex.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号